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Exchange coupling across the cyanide bridge in a series of novel cyanometalate complexes with
CuII-NC-MIII (M ) Cr and low-spin Mn,Fe) fragments has been studied using the broken-symmetry DFT
approach and an empirical model, which allows us to relate the exchange coupling constant withσ-, π-, and
π*-type spin densities of the CN- bridging ligand. Ferromagnetic exchange is found to be dominated by
π-delocalization via the CN- π pathway, whereas spin polarization with participation ofσ orbitals (in examples,
where the dz2 orbital of MIII is empty) andπ* orbitals of CN- yields negative spin occupations in these
orbitals, and reduces the CuII-MIII exchange coupling constant. When the dz2 orbital of MIII is singly occupied,
an additional positive spin density appears in theσ(CN) orbital and leads to an increase of the ferromagnetic
Cu-NC-M exchange constant. For low-spin [MIII (CN)6]3- complexes, the dz2 orbital occupancy results in
high-spin metastable excited states, and this offers interesting aspects for applications in the area of molecular
photomagnetism. The DFT values of the exchange coupling parameters resulting from different occupations
of the t2g orbitals of low-spin (t2g

5) FeIII are used to discuss the effect of spin-orbit coupling on the isotropic
and anisotropic exchange coupling in linear Cu-NC-Fe pairs.

Introduction

The search for new molecular compounds with long-range
magnetic order at room and higher temperatures is a main goal
in the field of molecular magnetism.1,2 One family of compounds
with room-temperature magnetic behavior is that of the Prussian
blue analogues. A breakthrough in this field has been the
synthesis of a room-temperature magnet V[Cr(CN)6]x‚nH2O in
1995.3 Surprisingly, the room-temperature magnetic behavior
of this class of compounds is mainly due to antiferromagnetically
coupled t2g

n-t2g
n′ (n,n′ < 6) pairs of metal ions and a net

magnetic moment imposed by mixed-valence, achieved by the
control of stoichiometry.

Theoretical studies on the magnetic exchange via the CN
bridge have been carried out on dinuclear model complexes
using parametric models, such as the valence bond configuration
interaction model,4,5 and more sophisticate approaches based
on Extended Hu¨ckel calculations,6,7 the Kahn-Briat exchange
coupling model,8,9 the augmented spherical waves model,10

Hartree-Fock,11,12 and density functional theory.12,13 A recent
study on Prussion blue analogues discussed the importance of
a systematic search for high-temperature magnetic complexes
based on exchange coupling constants derived from broken-
symmetry DFT calculations.14 In these calculations, an efficient
coupling mechanism via CNπ orbitals has been shown to give
rise to strong antiferromagnetic coupling, particularly pro-
nounced in the case of t2g

4-t2g
3 (MnIIIVII), t2g

3-t2g
3 (MoIIIVII),

t2g
3-t2g

4 (CrIIIMoII), t2g
2-t2g

3 (VIIIVII), and t2g
3-t2g

3 (CrIIIVII)
metal pairs. The symbiosis ofπ donation (for MIII ) andπ-back-

donation (for MII) plays an important role in all of these systems.
Also, a potential ferromagnetic coupling of a reasonable
magnitude in the case of the t2g

3-t2g
6eg

2 MnIVNiII pair has been
demonstrated by these first-principles calculations.14

In broken-symmetry DFT studies, exchange coupling con-
stants are extracted from the energies of the high-spin and the
broken-spin single Slater determinants, from which a pure spin
state can, in principle, be projected out. The analysis of the
resulting exchange constant in terms of underlying orbital
interactions is difficult if not impossible. However, an interesting
correlation between exchange coupling constants from broken-
symmetry DFT calculations and spin densities for the high-
spin and low-spin Slater determinants have been demonstrated
in dinuclear azido-bridged copper complexes15 and recently been
extended to cyanide-bridged Prussian-blue-type model com-
pounds.14 Qualitative discussions that relate the spin density with
the exchange coupling constant,16 covering cases of weak to
moderate exchange coupling, deserve further quantitative analy-
sis. It is therefore tempting to look for a more explicit connection
between the exchange coupling constant in cyano-bridged
complexes and the spin density on the cyanide bridging ligand.

It is well-known that current implementations of Kohn-Sham
DFT cannot account for orbital degeneracy in a proper way.17,18

Thus, although calculations of the exchange coupling between
transition-metal ions with nondegenerate ground states (such
as NiII-NC-CrIII ) can be done routinely, this is not the case
for ions such as MnIII and FeIII in their low-spin (3T1 and2T2)
orbitally degenerate ground states. An average-of-configurations
Kohn-Sham formalism with evenly occupied d orbitals (non-
integer occupations) have been applied within the constraint of
high symmetry.19-23 Alternatively, different exchange coupling
constants for different electronic configurations from the
degenerate3T1 or 2T2 ground states have been shown to lead to
orbitally dependent (non-Heisenberg) exchange coupling.24-26
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Therefore, we wanted to explore whether reported single
determinant BS-DFT values for the exchange coupling constant
in cyanide-bridged transition metals with degenerate T1 and T2

ground states14 are physically relevant.
Recently, we have prepared and characterized a series of

oligonuclear cyanometalates.27 They include CuII coordinated
to four sp3-nitrogen atoms from a tetraazamacrocyclic ligand
and MIII (CN)63- (MIII ) CrIII (d3) and low-spin MnIII (d4) and
FeIII (d5) complexes). CuII is a Jahn-Teller-active metal ion and
tends to afford short and strong equatorial bonds, and long and
weak bonds to the terminal N atoms of the bridging cyanide
ligands. Depending on the system, these weak bonds can span
a wide range of Cu-N distances, which vary between 2.25 and
2.57 Å. As expected for the long Cu-(NC)M bond distances
and the orthogonality of the magnetic orbitals [σ(dx2-y2)for
Cu(II), π (dxz, dyz, and dxy) for the t2g

nMIII ions (n ) 3 (CrIII ), n
) 4 (MnIII ), n ) 5 (FeIII )], the magnetic interaction in these
systems are weak and ferromagnetic.

Here, we study the dependence of the exchange coupling in
complexes with CuII-NC-MIII bridges on the electronic
configuration of the low-spin [M(CN)6]3- (M ) Cr, low-spin
Mn and low-spin Fe). An analysis of the ferromagnetic exchange
coupling constants in terms of the spin densities28 on the cyanide
bridge allows us to deduce for the first time the effect of M-CN
σ andπ donation, andπ* back-donation, and to study in detail
the relative importance of spin delocalization and spin polariza-
tion for the magnetic exchange across the cyanide bridge. The
dependence of the exchange coupling constant on the electronic
configuration of the degenerate ground state of MnIII (t2g

4) and
FeIII (t2g

5) is also described. Orbital degeneracy in these ground
states may be lifted by Jahn-Teller distortions, however. DFT
values of the exchange coupling parameters from different
occupantions of the t2g orbitals of low-spin (t2g

5) FeIII as well
as spin-orbit coupling are used to characterize the isotropic
and anisotropic exchange coupling constant in the linear
Cu-NC-Fe exchange pair.

Theoretical Background and Computational Details

Exchange Coupling Constants from DFT Calculations.
The exchange coupling constants (JBS) have been calculated
using DFT and the broken-symmetry approach (BS-DFT).29,30

For isotropic exchange coupling with a Heisenberg Hamiltonian
(eq 1)JBS is given by eq 2, which is valid under the assump-
tion of a weak overlap (S12) between the magnetic orbitals
(S12

2 , 1).

The termEBS - EHS represents the energy difference between
the total energies of two spin-unrestricted DFT calculations; one
for the high-spin Ms ) S1 + S2 state, which affords the energy
EHS, and the other for an Ms ) |S1 - S2| determinant with energy
EBS. The latter is obtained from a spin-polarized DFT calculation
by breaking the spin symmetry, that is, by imposing spin
polarization of different sign on the two magnetic centers. It
has been shown that this method allows us to account for a
large part of the electronic correlation and it is generally applied
in DFT calculations.31 However, if antiparallel spin alignment
is favored, then values ofJBS exceed the experimental values
typically by a factor of 2. The origin of this discrepancy and
possibilities for corrections have been discussed, and this still
is subject to controversy.32-34

Here, DFT values of exchange coupling constants are
calculated with eqs 1 and 2 and a PW91 functional. Our aim is
to understand the factors that affect the exchange coupling and
its anisotropy, rather than to obtain accurate values of the
exchange coupling constant. However, the effect of the func-
tional, in particular the changes that emerge when changing from
the pure (PW91) to a hybrid (B3LYP) functional and the effect
of the different basis sets are addressed.

Correlation between Spin Density and Magnetic Ex-
change.The first attempt to correlate magnetic exchange with
spin densities on interacting atoms was based on a phenom-
enological Hamiltonian for the interaction of two subsystems
(organic radicals) A and B35

whereSi
A andSj

B are spinsi( j) of s ) 1/2 on A the radicals (B)
and

In eq 4 [ij |ij ] is the two-electron exchange coupling constant,
〈i|h|j〉 is the transfer (hoping) constant, andU is the on-site
Coulomb repulsion parameter. The two terms in eq 4 are of
different sign. The first term is positive and favors ferromagnetic
spin alignment (potential exchange). The second term is negative
and tends to lead to an antiferromagnetic coupling. It reflects
delocalization of the magnetic electrons connected with gain
of kinetic energy (kinetic exchange). Equation 3 can be written
in the form35

whereSA andSB are the total spin operators for A and B and
Fi

A andFj
B are the corresponding spin densities. Therefore, the

exchange coupling constant between two extended magnetic
units A and B is approximated by a sum over exchange
parameters, which belong to interactions between their constitu-
ent units, Jij

AB, and are weighted by the product of spin
densities:

Equation 6 has been applied to organic radicals with spinsi
andj, which are in close contact and are stacked on top of each
other such thatJij

AB < 0 (i.e., the second term in eq 4
dominates). It follows that coupling between A and B is
antiferromagnetic when bothFi

A andFi
B are positive, and it is

negative ifFi
A andFi

B are of different sign. It has been pointed
out36,37 that eqs 5 and 6 are not based on a rigorous theory but
are purely phenomenological. It has been shown, however, by
valence bond calculations, that they can be applied in highly
symmetric situations in which one interaction term (within the
sum of eq 6) dominates over the other terms.

If we regard the Cu-MIII exchange pair as composed of two
units [Cu(NH2CH3)4]2+ (Cu) and the [M(CN)6]3- (NCM)
subunits, then we can present the exchange Hamiltonian in an
alternative form, eq 7, whereJCuM is the exchange coupling
constant between the Cu and M magnetic centers, andJCu-NCM

is the exchange coupling constant between the [Cu(NH2CH3)4]2+

(Cu) and [M(CN)6]3- (NCM) units as a whole.

Hex ) -J‚S1‚S2 (1)

JBS ) (EBS - EHS)/(2‚S1‚S2) (2)

HAB ) - ∑
i, j

Jij
AB Si

A‚Sj
B (3)

Jij ) [ij |ij ] - 4
〈i|h|j〉2

U
(4)

HAB ) -JAB SA‚SB ) -SA‚SB∑
ij

Jij
AB Fi

A Fj
B (5)

JAB ) ∑
ij

Jij
AB Fi

A Fj
B (6)
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Furthermore, with the concept of local spins38-40 we can
represent the total spinSNCM as a sum ofsN, sC, andsM local
spins, that is

and the spin density on NCM,FNCM, as the sum ofFN, FC, and
FM. In analogy to eq 6

where only one term, that due to N with the closest contact to
Cu, is considered.JCu-N is the spin coupling energy due to to
unit spin density on N. It is worth noting that, because of the
vanishing overlap, the value ofJCu-N is given by the first term
of eq 4 and is positive. Spin densities of the same sign on Cu
and N lead to ferromagnetic coupling, while spin densities of
different sign lead to antiferromagnetic coupling. We will
compare exchange coupling constants, obtained from a BS DFT
approach with spin densitiesF(N), deduced from spin-
unrestricted DFT calculations on the [MIII (CN)2(NH3)4]1+ and
[MIII (CN)6]3- subunits. In a refined treatment, we have to
consider spin populations on theσ and π orbitals 3a1(σ) and
1e(π), and on the empty and (antibonding) 2eπ* orbital of CN-

(Figure 1), which we denoteFσ, Fπ, andFπ*, respectively (eq
10). These spin populations arise from spin delocalization
and/or spin polarization induced on the nominally diamagnetic
CN- ligand, due to the overlap of its empty and doubly occupied
orbitals with those of MIII , which carry the unpaired d electrons.

The values of jσ, jπ, and jπ* are approximated with BS-DFT
calculations and a model complex, which consists of the CuII

amine complex and a CN radical with a single electron placed
on the 3a1(σ), 1e(π), and 2e (π*) orbitals.

Computational Details.Density functional calculations have
been carried out using the Amsterdam density functional (ADF)
program41-46 with the local density (LDA) and generalized
gradient approximation (GGA). The LDA was applied with the
Vosko-Wilk-Nusair (VWN)47 local density potential and the
GGA was applied by using Perdew-Wang91 (PW91)48,49

exchange-correlation functional. Large Slater-type orbital (STO)
(triple-ú) basis sets with one polarization function (p-type for
hydrogen, d-type for C and N) and the frozen core approxima-
tion have been used up to 3p for metals and up to 1s for carbon
and nitrogen.

All of our attempts to get an SCF convergence of a
{Cu(NH2CH3)4NCCr(CN)5}1- complex while keeping CuII and
CrIII in their nominal d9 and d3 configurations failed, probably
due to some deficiencies of the basis sets of Cu15 and/or of the
used functional. As expected, orbitals of CuII are lower in energy
than those of CrIII . Because of the highly negative (-3) charge
on [Cr(CN)6]3-, a flow of electron charge localized mostly on
equatorial CN ligands toward the 3d orbitals of CuII took place,
resulting in a reduction of Cu from a nominal (II) to a (I) valence
state. Although this is a well-known fact from Cu-cyanide
chemistry with disproportionation of Cu(CN)2 into CuCN and
(CN)2, it is an artifact for the rather weak Cu-NC inter-
action. To circumvent this difficulty, we have chosen a
CuII-NC-CrIII model complex with a geometry obtained from
a DFT geometry optimization (Figure 2) and have taken this
geometry without changes for the MIII ) Mn and Fe complexes.

To check the inherent approximations due to this simplified
model, calculations with ORCA50 and the TZVP basis sets or
SVP basis sets and a B3LYP functional have been done. With
the program ORCA and a charge-compensating continuum
model (COSMO), exchange coupling constants and spin densi-
ties for the CuII-NC-CrIII model complexes and [Cr(CN)6]3-

have been compared and showed no significant effect on
replacement of terminal CN by NH3, and no essential depen-
dence on the basis set (TZVP vs SVP). However, with a PW91
geometry-optimized CuII-NC-CrIII model complex,JBS values
are found to be in better agreement with experiment than those
obtained with the B3LYP functional.

To explore the effect of the non-CN ligand in thetrans-
[MIII (NH3)4(CN)2]+ model complexes on the magnetic exchange,
and to get spin densities on the CN-bridging ligand, spin-
unrestricted DFT calculations ontrans-[MIII (NH3)4(CN)2]+ and
[MIII (CN)6]3- (MIII ) Cr, Mn, Fe) model complexes have been
caried out, both on the bare ions and in the latter case of charge-
compensated species. Use of the conductor-like screening model
(COSMO),51 as implemented in ADF,52 has been made. We
adopted the dielectric constant of water (ε ) 78.4) with the
solvent radii (in Å) of 1.00 (MIII ) Cr, Mn, Fe), 2.10 (C), and
1.40 (N).

Results and Discussion

Dependence of the CuII ‚‚‚Cr III Exchange Coupling Con-
stant on the Cu-NC-Cr Geometry. Values of the CuII-CrIII

Hexc ) -JCuM‚SCuSM ) -JCu-NCMSCuSNCM (7)

SNCM ) sN + sC + sM + ... (8)

JCu-NCM ) JCu-N FN + JCu-C FC + JCu-M FM ≈ JCu-N FN

(9)

JCu-NCM ≈ Fσ‚jσ + Fπ‚jπ + Fπ* ‚jπ* (10)

Figure 1. Orbitals on the CN- bridges coupled with the eg and t2g

orbitals of the transition-metal ions MIII .

Figure 2. Dinuclear DFT (PW91) geometry-optimized CuII-NC-CrIII

model complex adopted for the calculation of the BS-DFT exchange
coupling constants of CuII-NC-MIII (MIII ) Cr, Fe, Mn).16
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exchange constantJBS in dependence of the Cu-N distance,R,
for a linear Cu-C-N-Cr bridge are listed in Table 1.JBS is
positive and small, reflecting a weak Cu-Cr ferromagnetic
coupling. As expected,JBS decreases with increasingR. We have
explicitly checked the effect of the adopted functional, the basis
set, and the replacement of terminal CN- by NH3 ligands (see
the Supporting Information). A value ofJBS [R ) 2.2 Å, 6.5
cm-1 (PW91, ADF), 6.8 cm-1 (PW91, ORCA)] in better
agreement with experiment (J ) 6.8 cm-1)27 was obtained when
using a PW91 functional instead of the B3LYP functional [J )
3.8 cm-1 (ORCA), TZVP basis in all calculations]. The change
from a triple to double-ú basis (6.8 vs 5.4 cm-1) does not affect
JBS significantly. In line with spin density analysis (see below),
small changes of the value ofJBS were found when replacing
NH3 by CN (6.8 vs 7.3 cm-1, PW91-functional, TZVP basis,
ORCA).

Spin Densities and Exchange Coupling in Weakly Coupled
Cu-NC-MIII (MIII ) Cr III , MnIII , FeIII ) Exchange Pairs.
JBS values for the Cu-NC-MIII pairs (JBS) are listed in Table
2. Different electronic states have been considered in the case
of the MnIII and FeIII complexes. These include the3A2 (b2

2e2)
and3E (b2

1e3) electronic states of MnIII , which result from the
low-spin t2g

4 configuration of the parent octahedral3T1g term,
and the2B2 (b2

1e4) and2E (b2
2e3) electronic states split out from

the 2T2g ground state of low-spin octahedral FeIII . In addition,
results for the high-spin states,5A1 (b2

1e2b1
1) and5B1 (b2

1e2a1
1)

for MnIII and6A1 (b2
1e2b1

1a1
1) for FeIII , have been included in

Table 2. To facilitate comparison between the values ofJBS for
the CuII-MIII pairs with different electronic and spin states on
MIII , we list in Table 2 the product na‚nb‚JBS. It is the quantity
that sums up from contributions (jµν) over different magnetic
orbitals, and thus is particularly easy to interpret. Thus, for MnIII

5B2 (b2
1e2b1

1), for example, we have

As immediately follows from an inspection of the data in Table
2, the exchange is particularly efficient for MIII with singly
occupied e and a1 orbitals possessingπ andσ symmetries with
respect to the bridging CN-ligand. The exchange becomes
weaker when lowering the number of such singly occupied
orbitals, for example, in the case of MnIII -3E (b2

1e3) compared
to MnIII -3A2(b2e2), and nearly vanishes for the FeIII 2B2 (b2

1e4)
state with an unpaired electron in the dxy orbital of δ symmetry
with respect to CN.

Atomic spin densities as deduced by Mulliken population
analysis are listed in Table 3.

Spin densities do not change significantly if Lo¨wdin charges
are used instead (see the Supporting Information). Although the
total spin density on the bridging N [F(N)] is calculated to be
comparatively large and positive in all cases (except for
FeIII -2B2 [b2

1e4]) it is negative on C [F(C)] in those cases, where
the a1 (dz2)-orbital on MIII is empty. However,F(C) becomes
zero or even positive for MnIII -5B1 (b2

1e2a1
1) and FeIII -6A1

(b2
1e2b1

1a1
1) with a singly occupied a1 (dz2) orbital. An interest-

ing correlation betweenna‚nbJBS and F(N) was established
(Figure 3), consistent with eq 9. At the same time, we notice
significant deviations from the correlation line (Figure 3), which
are positive in the case of6A1(Fe) and negative in the case of
5A1(Mn) (see underlined entries in Figure 3). These are also
the two cases with a singly occupied or empty dz2 orbital,
respectively.

We now focus on the spin density on the bridging CN ligand
and concentrate on the corresponding contributions fromσ- and
π-type orbitals. In Table 3 we report spin populations for these
orbitals on C and N, for bothtrans-[M(NH3)4(CN)2]+ and
[M(CN)6]3- (M ) CrIII , MnIII , and FeIII ). We first focus on the
former complex. As discussed in ref 16, spin densities on
ligands, induced by their bonding to a paramagnetic transition
metal ion are due to two possible mechanisms: spin delocal-
ization and spin polarization. In the former, spin density, which
initially belongs to the metal ion, is redistributed to orbitals of
the closed shell ligand that overlaps with the metal d orbitals.
Taking, for example, one unpaired spin on the t2g orbital, initially
localized on MIII , this leads to the spin population in orbitalµ
on ligand A,Fµ(A), as given by eq 12

The spin polarization mechanism is more subtle. It arises from
the natural tendency of unpaired electrons on orthogonal orbitals
to orient parallel in a given atom. If there is initially one electron
pair on a ligand and a single electron ofR spin on the metal
ion, then partial formation of a pair ofR spins concentrated on
the metal ion and occupying orthogonal orbitals will necessarily
generate a netâ spin density on the ligand.

To illustrate the operation of the two mechanisms, we take
(t2g

3) CrIII -CN as an example.
Transfer ofâ spins from the occupied 1e CNπ orbital to the

half-filled t2g
3 shell creates positive spin density on this orbital,

and transfer ofR spin of CrIII to the empty 2e(π*) orbital creates
also a positive spin density on this antibonding orbital (Figure
4a). The eg orbitals of CrIII are empty; therefore, transfer ofR
spins from the doubly occupied 3a1 to the eg (dz2)-type orbital
of CrIII createsâ spin density on the CN ligand. This is favored
over the transfer ofâ spins due to intra-atomic (Hund) exchange,

TABLE 1: Dependence of the Exchange Coupling Constant
(in cm-1) from a Broken-Symmetry DFT Calculation (JBS)
on the Cu-NCCr Distance R (in Å)

R 2.10 2.20 2.30 2.40 exptla

JBS 8.9 6.5 4.4 3.6 6.8

a Experimental distanceR ) 2.247 Å; R distance for the PW91
optimized geometry,R ) 2.20 Å.

na‚nb JBS(Cu-Mn) )
jx2-x2,xy + jx2-y2,xz + jx2-y2,yz + jx2-y2,x2-y2 (11)

TABLE 2: Exchange Coupling Energies from
Broken-Symmetry DFT Calculations of a Series of
[Cu(NH2CH3)4-NC-MIII CN(NH3)4]1- Exchange Coupled
Model Complexes (MIII ) Cr III , MnIII , FeIII ) with Various
Electronic States at thetrans-MIII (NC)2(NH3)4 Fragment with
Spin Populations on CN from Spin-Unrestricted DFT
Calculations on the Latter Fragmentsa

CuII-MIII pair
(MIII electronic configuration) JBS na‚nb‚JBS F(N) F(C)

CuII-NC-CrIII
4B1(b2

1e2) 6.5 19.5 0.114 -0.135
CuII-NC-MnIII

3A2(b2
2e2) 10.4 20.8 0.114 -0.107

3E (b2
1e3) 5.2 10.4 0.063 -0.074

5A1(b2
1e2b1

1) 3.0 12.0 0.098 -0.146
5B1(b2

1e2a1
1) 6.2 24.8 0.114 0.000

CuII-NC-FeIII

2E(b2
2e3) 16.6 16.6 0.078 -0.045

2B2(b2
1e4) -1.0 -1.0 -0.009 -0.028

6A1(b2
1e2b1

1a1
1) 8.7 43.5 0.151 0.059

a C4V point group symmetry notations for the electronic terms of CrIII ,
MnIII , and FeIII have been used.

æt2g
) ∑ct2g,µ

øµ

Fµ(A) ) ∑
ν

ct2g,µ
.ct2g,ν

Sµν (12)
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which tends to stabilize parallel spins on CrIII . Therefore,
negative spin densitiesFσ(C) (Table 3) can be understood, based
on a spin polarization. In support of this interpretation, we find
positiveFσ(C) values in cases with a singly occupied a1 orbital
on MIII (Figure 4b). The situation changes withπ-type spin
densities. AlthoughFπ(N) is positive, in line with a spin
delocalization mechanism,Fπ(C) is negative. As follows from
spin restricted calculations, there is no electron population on
the carbonπ-orbitals of the CN ligand in the ground state of
the CrIII -CN complex. Therefore, the spin density found on
the carbonπ orbitals originates from the interplay between spin
polarization and spin delocalization.

The spin densities in Table 3 are qualitatively in agreement
with polarized neutron diffraction experiments of Cs2KCr-
(CN)6.53,54 The computed spin densities also agree with spin-
density distributions in Cs2K[Fe(CN)6] and Cs2K[Mn(CN)6]
deduced from high-resolution magic angle spinning NMR
spectra.55 The comparison shows within the experimental and

computational accuracy that spin densities are overestimated
by DFT, typically by a factor between 2 and 10.

TABLE 3: Spin Densities on the CN Bridging Ligand that Originate from Spin Polarization and Spin Delocalization, Due to
Open-Shell Paramagnetic Transition Metal Ions intrans-[M(NH 3)4(CN)2]+ (A) and [M(CN) 6]3- (B) (M ) Cr III , MnIII and FeIII ),
and Their Decomposition into Contributions from the σ(CN), π(CN), and π*(CN) Orbitals of Cyanidea

CuII-MIII pair
(MIII electronic configuration) Fσ(C) Fπ(C) Fσ(N) Fπ(N) Fσ Fπ Fπ*

CuII-NC-CrIII

4B1(b2
1e2)

A -0.075 -0.060 0.001 0.113 -0.092 0.213 -0.159
B -0.076 -0.060 0.004 0.121 -0.093 0.226 -0.165

CuII-NC-MnIII

3A2(b2
2e2)

A -0.059 -0.048 0.000 0.114 -0.072 0.209 -0.143
B -0.058 -0.047 0.003 0.105 -0.071 0.193 -0.136

3E (b2
1e3)

A -0.046 -0.028 -0.004 0.067 -0.056 0.122 -0.083
B -0.044 -0.034 0.000 0.048 -0.055 0.094 -0.080

5A1(b2
1e2b1

1)
A -0.091 -0.055 -0.009 0.107 -0.112 0.200 -0.148
B -0.083 -0.059 0.001 0.102 -0.102 0.194 -0.151

5B1(b2
1e2a1

1)
A 0.031 -0.031 0.008 0.106 0.038 0.188 -0.112
B 0.087 -0.026 0.005 0.078 0.107 0.139 -0.087

CuII-NC-FeIII

2E(b2
2e3)

A -0.028 -0.017 -0.001 0.079 -0.034 0.137 -0.074
B -0.028 -0.022 0.001 0.048 -0.030 0.088 -0.062

2B2(b2
1e4)

A -0.024 -0.004 -0.007 -0.002 -0.030 -0.001 -0.005
B -0.020 -0.007 -0.002 -0.005 -0.025 -0.004 -0.008

6A1(b2
1e2b1

1a1
1)

A 0.069 -0.010 0.015 0.136 0.085 0.226 -0.100
B 0.118 -0.014 0.008 0.065 0.145 0.113 -0.062

a C4V point group symmetry notations for the electronic terms of CrIII , MnIII , and FeIII have been used.

Figure 3. Correlation between the Cu-NC-MIII (MIII ) CrIII , MnIII ,
FeIII ) exchange energynanbJBS and the spin density on N.

Figure 4. (a) Ground-state and charge-transfer configurations leading
to spin delocalization of the CrIII spins toward the CN bridge. (b) The
high-spin excited state and the excited LMCT charge-transfer state,
which lead to positive spin density on the 3a1 σ orbital of CN- in the
case of [Fe(CN)6]3-.
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If we confine to a model in which only 3a1, 1e, and 2e
contribute toFσ(C), Fπ(C), Fσ(N), andFπ(N), spin densitiesFσ,
Fπ, and Fπ* can be calculated from eq 13. To set up these
equations, a set of spin-unrestricted calculations on CN have
been carried out, in which a single electron has been placed on
3a1, 1e, and 2e. The calculations have shown that the single
spin localizes mainly on C

with probabilities of 0.815 and 0.776 for 3a1 and 2e, respec-
tively, and mainly on N with a probability of 0.700 for 1e. The
calculated values ofFσ, Fπ, andFπ* are included in Table 3,
and they confirm our interpretation based on qualitative argu-
ments. Thus,Fσ is found to be negative, except for cases with
singly occupied dz2 orbitals on MIII . Fπ is positive, in agreement
with the spin delocalization mechanism taking place byπ-type
LMCT (Figure 4a). Finally,Fπ* are negative and indicative of
rather strong electron correlation effects, involving the 2e orbital
of CN-. It is interesting that the overallπ contributions (sum
of Fπ andFπ*) are in favor of aπ-delocalization mechanism.
With the set of valuesFσ, Fπ, and Fπ*, we can calculate the
CuII-MIII exchange coupling constant based on the approximate
eq 10. In this equation jσ, jπ, and jπ* are exchange coupling
constants for the interaction between the unpaired spin of CuII

and the one of the CN radical with a spin on the 3a1, 1e, and 2e
orbitals, respectively. Results from spin-unrestricted calculations
that yield these metal-radical coupling constants are visualized
in Figure 5, along with the spin density plots. Note the
accumulation ofâ spin density on the C-end of the Cu-NC
moiety, similar to the MCN fragment. Cu-NC metal radical
coupling energies are as expected rather large, with exchange
constants following the orderjπ > jσ > jπ*. A nice correlation
between valuesJ′ andJBS is obtained (Figure 6), with the critical
points of 6A1(Fe) and5A1(Mn), which now lie exactly on the
line (see also Figure 3).

The approximation of the CuII-MIII exchange coupling
constant as a weighted sum over the parametersjσ, jπ, and jπ*

with the corresponding spin densitiesFσ, Fπ, and Fπ* as
weighting factors allows us to decompose the total energyJ′
into J′(σ), J′(π), andJ′(π*) terms (Table 4). Although theJ′(σ)
and J′(π*) terms are negative (antiferromagnetic),J′(π) is
ferromagnetic and dominates the sign of the overall coupling
energyJ′. The comparison between the values ofJ′ for thetrans-

[MIII (NH3)4(CN)2]+ model complex and for [M(CN)6]3- shows
that the CuII-MIII exchange coupling is weakly affected by the
nature of the equatorial ligands. The same result was obtained
when JBS(CuII-NC-CrIII ) was calculated directly [JBS ) 5.2
cm-1(CN), JBS ) 6.8 cm-1 (NH3)]. Only for MnIII [3E(b2

1e3)]
and FeIII [2E(b2

2e3)], and to lesser extent for FeIII [6A1(b2
1e2b1

1a1
1)]

we obtain lower values ofJ′ when replacing NH3 by CN-.
We have confined our spin-density analysis of the exchange

coupling to complexes with a linear CuII-NC-MIII bridge and
ferromagnetic CuII-MIII coupling. Spin population analysis of
the exchange coupling in the case of homo nuclear antiferro-
magnetically coupled pairs ofs ) 1/2 transition-metal ions have
been used to relate the exchange coupling constants from
broken-symmetry calculations with the spin density on the
magnetic ions in the high-spin (FHS) and broken-spin (FBS)
states15

Antiferromagnetic coupling is predicted forFHS > FBS. However,
it has been pointed out that in certain cases, such as in end-on
azide-bridged Cu2 pairs,FHS can become smaller thanFBS, and
this leads to ferromagnetic coupling. It is interesting to note
when focusing on the Cu-CN-Cr pair (Table 5) thatFHS <
FBS results for the CuII-CrIII pair, thus being consistent with
eq 14 and ferromagnetic CuII-CrIII coupling. This also emerges
for CuII-MnIII and CuII-FeIII pairs (see the Supporting Infor-
mation). A generalized form of eq 14 has led to an approxi-
mate equation for heterodinuclear complexes with spin den-
sities on centers 1 and 2 denoted byFHS1,FBS1 and FHS2,FBS2,
respectively:14,56

The na‚nbJBS versus∆ plot (see the Supporting Information)
shows a clear correlation. However, this correlation is less
pronounced, compared to that obtained with eq 10 (Figure 6).
It follows that explicit consideration of the electronic structure
of the bridging cyanide ligand is needed in order to relate the
exchange coupling energies with the underlying spin density
distributions.

Dependence of the Exchange Coupling on the Orbital
Occupancy and Exchange Anisotropy in the Case of Orbit-
ally Degenerate States: The Linear Cu-NC-Fe Exchange
Pair. Two different (opposing) forces operate within the3T1

and 2T2 ground states of low-spin octahedral MnIII and FeIII

complexes and tend to lift the orbital degeneracy; Jahn-Teller

Figure 5. Spin densities for theS) 1 state, resulting from the coupling
of the s ) 1/2 spin [Cu(NH2CH3)4]2+ with a s ) 1/2 CN radical with a
single electron placed on theσ(3a1), π(1e), and π*(2e) orbitals;
exchange coupling constants extracted from the HS and BS DFT
energies are also given.

Fσ(C) ) 0.815Fσ

Fπ(C) ) 0.300Fπ + 0.77Fπ* (13)

Fπ(N) ) 0.700Fπ + 0.224Fπ*

Figure 6. Correlation betweenJ′ andnanbJBS; J′ ) 11.36 (nanbJBS) -
60.5.

JBS ≈ -U(FHS
2 - FBS

2) (14)

na‚nbJBS ∝ ∆ ) [|FHS1
2 - FBS1

2|1/2+ |FHS2
2 - FBS2

2|1/2]2

(15)
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coupling, which we neglect in a first approximate,57 and spin-
orbit coupling.

The latter leads to a splitting of the3T1 and 2T2 states into
A1, T1, and E,T2 (accidentally degenerate; for3T1) andΓ7 and
Γ8 (for 2T2) in the order of increasing energy with energy
separations of the order of the spin-orbit coupling constant.
At very low temperature only the states A1 (for MnIII ) andΓ7

(for FeIII ) are thermally populated with effective g-tensor values
of zero and (1/3) (2+ 4k) (k, the covalent reduction factor),
respectively. Thus MnIII is nonmagnetic, whereasΓ7 of FeIII

behaves as as ) 1/2 Kramers doublet. We focus on the latter
ion and consider the CuII-NC-FeIII exchange pair. TheΓ7

(FeIII ) wave function is given by

where 0, and(1 refer to the ML values of theL ) 1 angular
momentum eigenfunctions and(1/2 denote thems components
of the s ) 1/2 spin. As can be shown, the(1 and 0 orbital
functions give rise to the real dyz, dxz, and dxy orbitals,
respectively. It follows from eq 16 that it is the linear
combination of BS-DFT exchange coupling parameters for the
Cu-Fe (2E) and Cu-Fe (2B2) pairs (Table 2, 16.6 cm-1 and
-1.0 cm-1, respectively) rather than each single determinant
JBS, which yields the exchange interaction for the Cu-Fe (Γ7)
pair. In this case, orbital degeneracy exchange coupling is
described by an orbital-dependent exchange operator.24-26 The
application of this formalism to the Cu-NC-Fe (Γ7) exchange
pair (see the Supporting Information) leads to the following
exchange operator

written within the direct product of two couplings) 1/2 pseudo-
spins and the following dependence of its eigenvalues on the
total spinS ) 0, 1 and Ms ) 0, (1 quantum numbers:

If we neglect the small contribution of the exchange of Cu-Fe
(2B2), the isotropic (J) and the anisotropic (D) parameters are
given by the following expression in terms of theJ(2E) energy
(16.6 cm-1, Table 2):

As immediately follows from eq 24,J is reduced by a factor of
about five (J ) 3.6 cm-1), compared to its nominalJ(2E)
BS-DFT value. In addition, a negative and about twice larger
than J anisotropic contributionD (-5.4 cm-1) results, which
leads to stabilization the Ms ) (1 pair of states against the Ms
) 0 one. The effect of anisotropy gets even larger when going
to extended linear complexes CuII-FeIII -CuII and further to
MnII-FeIII -MnII (with an s ) 5/2 high-spin state on MnII).58

However, a vibronic reduction of this anisotropy in the case of
a dynamic Jahn-Teller coupling of the2T2g ground state of
[Fe(CN)6]3- with the trigonal distortion mode (Γ2) is expected
to take place.57

The strong reduction of the isotropic exchange constant and
the appearance of large anisotropic contributions allows us to
conclude that reported DFT values of the exchange coupling
constants for a series of cyanide bridged exchange pairs14 [more
explicitly MnIIIVII (t2g

4-t2g
3), CrIIIMoII(t2g

3-t2g
4), VIIIVII-

(t2g
2-t2g

3), MnIIICrII (t2g
4-t2g

3eg
1), CrIIIVIV(t2g

3-t2g
1), CrIIIVIII -

(t2g
3-t2g

2), MnIIIVIII (t2g
4-t2g

2), VIIINiII (t2g
2-t2g

6eg
2), TiIIICrIII -

(t2g
1-t2g

3), and TiIIIVII(t2g
1-t2g

3)] are not correct and should be
regarded with great care. However, when applied to highTc

magnets with cubic perowskite structure14 anisotropy may cancel
partly or completely. Under such conditions, ferrimagnetic
couplings are not expected to be affected largely by anisotropy.
However, in polynuclear magnetic clusters with symmetry lower
than cubic, anisotropy may play an important role. We have
shown that BS-DFT values of the exchange coupling parameters
deduced from single determinants could be very useful when
calculating exchange coupling energies between spin-orbit split
multiplets, such as the just illustrated CuII-NC-FeIII model

TABLE 4: Exchange Coupling (Denoted Hereafter asJ′ b) Deduced from a SPSD-Model Usingtrans-M(NH 3)4(CN)2
1+ and

M(CN)6
3- Building Blocksa

[Cu(NH2CH3)4-NC-MIIICN(NH3)4]3+ [Cu(NH2CH3)4-NC-MIII (CN)5]1-
CuII-MIII pair

(MIII electronic configuration) J′ J′(σ) J′(π) J′(π*) J′ J′(σ) J′(π) J′(π*)

CuII-NC-CrIII
4B1(b2

1e2) 220 -129 430 -81 242 -130 456 -84
CuII-NC-MnIII

3A2(b2
2e2) 248 -101 422 -73 222 -99 390 -69

3E (b2
1e3) 125 -78 246 -42 72 -77 190 -41

5A1(b2
1e2b1

1) 171 -157 404 -75 173 -143 392 -77
5B1(b2

1e2a1
1) 374 53 380 -57 386 150 281 -44

CuII-NC-FeIII

2E(b2
2e3) 190 -48 277 -38 98 -42 178 -32

2B2(b2
1e4) -46 -42 -2 -2 -48 -35 -8 -4

6A1(b2
1e2b1

1a1
1) 525 190 456 -51 401 91 228 -32

a The decomposition ofJ′ into contributions from CuII-π(CN), π*(CN), andσ(CN) metal-radical coupling energies are also given. All energies
in cm-1. b J′ ) cσ‚jσ + cπ‚jπ + cπ*‚jπ*; values ofjσ ) 1400 cm-1, jπ ) 2020 cm-1, and jπ* ) 510 cm-1 have been deduced as energies due to
Cu(NH2CH3)4-NC metal Cu2+(d9)-CN radical coupling.

TABLE 5: Atomic (Mulliken) Spin Populations for the
CuNCCr Pair in Its High-Spin (HS) and Broken-Spin (BS)
State as Well as for the Separate Cu and NCCr Magnetic
Building Units

Cu N C Cr

HS 0.460 0.086 -0.100 3.194
BS 0.468 0.081 -0.095 3.190
Cu 0.455
NCCr 0.114 -0.127 3.188

Ψ(Γ7,ms ) 1
2) ) x2

3|-1,
1
2〉 - x1

3|0, - 1
2〉

Ψ(Γ7,ms ) - 1
2) ) x2

3|1,- 1
2〉 - x1

3|0,
1
2〉 (16)

Hexc ) -J‚S1S2 + D[Sz
2 - 1

3
S(S+ 1)] (17)

E(S) ) - J
2[S(S+ 1) - 3

2] + D(Ms
2 - 2

3) (18)

J ) 2
9

J(2E) (19)

D ) - 1
3

J(2E)
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example. This is of great importance for a more systematic
search in molecular magnetism.

Conclusions

(1) Magnetic coupling across the CN bridge is governed by
pathways that involveπ[t2g(dxz,yz), 1e(CN)], π*[t 2g(dxz,yz),
2e(CN)], as well asσ[eg(dz2), 3a1(CN)] (M-CN) orbitals. The
σ interactions are usually neglected.

(2) If dz2 is empty, then CNf M transfer leads toâ spin
density contributions of C and N, which weakens the magnitude
of the Cu-M exchange coupling constants dominated byR-spin
densities.

(3) If dz2 is singly occupied, then bothσ- andπ-transferred
spin densities are ofR type, and this enhances the ferromagnetic
exchange interactions. Because, for the strong CN ligand, single
occupancy of dz2 takes place in high-spin, metastable excited
states, this opens new aspects of interest for molecular photo-
magnetism.

(4) A new concept for the calculation of magnetic exchange
coupling constants, based on spin densities of the magnetic
building blocks of a dinuclear transition metal complex, is
presented and applied to CuII-NC-MIII pairs at a phenomeno-
logical level. In a first step, the spin density is calculated on
the CN bridge of the MIII -CN complex. In a second step, the
coupling of a single CN• radical with the CuII complex is
computed, considering various orbital configuration of the
unpaired electron. Finally, the information from the spin-density
calculations of the first step is used to properly reduce the
Cu-CN metal radical exchange constants, and this yields the
Cu-NC-M dimer exchange coupling constant. Values ofJ,
deduced from this model, are systematically larger than those
from broken-symmetry calculations because DFT overestimates
metal-ligand covalency. However, there is a nice linear
correlation between the two sets ofJ values. The new approach
allows us to analyze the exchange coupling across the CN bridge
in terms of the pathways, which involve theσ, π, andπ* orbitals
of CN. The application to the CuII-CN-MIII pairs shows that
the ferromagnetic exchange constant is dominated by spin
delocalization over the fully occupied CNπ orbital; both spin
polarization and delocalization which involve the occupiedσ
and the emptyπ* molecular orbitals are nonnegligible, and the
latter yield negative (antiferromagnetic) contributions toJ′.

(5) The inclusion of orbital dependence of the exchange
coupling leads to a large exchange coupling anisotropy in linear
CuII-NC-FeIII pairs, and this is found to further increase in
pairs CuII-FeIII -CuII and MnII-FeIII -MnII (with s ) 5/2 spin
on Mn).

(6) One needs to be cautious when calculating exchange
coupling constants with the BS-DFT approach in the case of
transition metals with T1 and T2 orbitally degenerate states.
Mixing between orbital configurations via the spin-orbit
coupling operator can strongly modify the DFT predicted values
of isotropic exchange coupling constants.
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